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Two spectroscopic needs for photo-z work:
training and calibration

e Better training of
algorithms using
objects with
spectroscopic redshift
measurements shrinks
photo-z errors and
improves DE
constraints, esp. for
BAO and clusters
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— Training datasets will contribute to calibration of photo-z's.
~Perfect training sets can solve calibration needs.
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Two spectroscopic needs for photo-z work:
training and calibration ﬁDESC

¢ For weak lensing and
supernovae, individual-
object photo-z's do not 2.5
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need high precision, but gs

the calibration must be i 2.0

accurate - i.e., bias and = ol
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— uncertainty in bias, 6(5,)= 0(<z, -z.>), and in scatter, o(o,)=
o(RMS(z, —z,)), must both be <~0.002(1+z) for Stage IV surveys



Biggest concern: incompleteness in training/

calibration datasets
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e In current deep redshift surveys

(to i~22.5/R~24), 25-60% of
targets fail to yield secure
(>95% confidence) redshifts

e Redshift success rate depends
on galaxy properties - losses
are systematic, not random

e Estimated need 99-99.9%
completeness to prevent
systematic errors in calibration
from missed populations
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Note: even for 100% complete samples, current false- A\
z rates can compromise calibration accuracy — SDESC

e Only the highest- [ T
confidence redshifts
should be useful for
precision calibration: 0.010~ | -
lowers spectroscopic : _
completeness further
when restrict to only
the best

Error in <z>

Based on simulated i
redshift distributions for [ —— 100k calib. spectra
ANNz-defined DES bins in | T ST e

mock catalog from Huan kb S L

Lin, UCL & U Chicago, 00 02 04 06 08 10 12 14
provided by Jim Annis Nominal mean z

0.001 |- |
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3 Ways to address spectroscopic incompleteness ~_\\)
for photo-z calibration — all may be feasible ﬁDESC

-

Degradation of w, constraints
A L L L B R

zM=0.4

20 zg =0.2 .

Throw out objects
lacking secure
photo-z calibration

— ID regions in e.g. ugrizy space where redshift failures occurred

— Eliminating a fraction of sample has modest effect on FoM
- Not yet known if sufficiently clean regions exist



3 Ways to address spectroscopic incompleteness W)
for photo-z calibration — all may be feasible QDESC

Il. Incorporate additional information

— Longer exposure/wider wavelength range spectroscopy
(JWST, etc.) for objects that fail to give redshifts in first try
- Not yet known if will yield sufficient completeness

— Develop comprehensive model of galaxy spectral evolution
constrained by redshifts obtained

- A major research program, not there now

Ill. Cross-correlation techniques



Genesis of the idea ~\\

118 S. Phillipps and T. Shanks
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Figure 1. Variation of excess density of galaxies, Zexcess, With absolute magnitude (for 0.5 mag bins). Solid (dashed)
curve represents a Schechter function with slope parameter =-1 (—1.25) normalized to agree near M—5 log

h=-19.8.

e Phillips & Shanks 1987: Can measure luminosity function by measuring
angular cross-correlation of photometric galaxies with objects of known
spec-z, in bins of magnitude (260 spec-z's in ~150 sq. deg.)

e |f you can measure luminosity function at each z, you can also determine
the redshift distribution. ..



Cross-correlation methods: exploiting redshift

information from galaxy clustering

e Galaxies of all types cluster
together: trace same dark matter
distribution

e Galaxies at significantly different
redshifts do not cluster together

e From observed clustering of
objects in one sample vs. another _
(as well as information from =
autocorrelations), can determine
the fraction of objects in
overlapping redshift range

e Do this as a function of
spectroscopic z to recover p(z)
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Cross-correlation methods: exploiting redshift

information from galaxy clustering

e Key advantage: spectroscopic

sample can be systematically sl

incomplete and include only bright
galaxies!

See: Newman 2008, Ho et al. 2008,

Matthews & Newman 2010, 2011
N
= 4

Blue: z , . distribtion of objects with

0.7 < Z hot

Black: True z distribution of sample,
spanning 24 widely-separated
fields

Red: Cross-correlation reconstruction
with only a R<24, 4 deg? survey
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Cross-correlation methods: exploiting redshift
information from galaxy clustering

e Key advantage: spectroscopic | |
] SDSS Luminous Red Galaxies
sample can be systematically AL e
incomplete and include only bright 81 —— photozasibution -
) X — Cluster z distribution
gaIaXIeS! i from LRG x QSO correlations

6 - -
e See: Newman 2008, Ho et al. 2008, ' '
Matthews & Newman 2010, 2011
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Red: Photo-z distribution for LRGs
in SDSS
Black: Cross-correlation |
reconstruction using only SDSS -2l b b Lo
0.0 0.5 1.0 1.5 2.0
QSOs (rare at low z!) redshift

Menard et al. 2013



Cross-correlation methods: exploiting redshift

information from galaxy clustering

|
\
~ S
AR
—N —
- v
e A
=
4 " J -Il'u'-.(njlg/ Scherce Colaboration

-

e Key advantage: spectroscopic
sample can be systematically
incomplete and include only bright
galaxies!

e See: Newman 2008, Ho et al. 2008,
Matthews & Newman 2010, 2011

Red: Photo-z distribution for LRGs
in SDSS

Black: Cross-correlation
reconstruction using only SDSS
Mg Il absorbers (even rarer!)
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Menard et al. 2013



Cross-correlation methods have been used to test

SDSS photo-z's
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QSO samples are very useful at z>1: eBOSS and
DESI will provide many
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Cross-correlation methods can provide accurate

redshift calibration for LSST

¢>500 degrees of overlap with
DESI-like survey would meet
LSST science requirements for
photo-z calibration errors to be
no worse than statistical errors
on weak lensing measurements

¢ 4000 sq. deg of overlap
expected.

Error in <z>
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Snowmass White Paper:
Spectroscopic Needs for Imaging DE
Experiments



Spectroscopic requirements for cross-correlation
methods

e Photo-z calibration would still R — -

"" A — o — e — — T — 1 —

be degrading Figure of Merit 4k deg’ DESI

e—— 20k deg® DESI i
0.010 - --- 30k calibration spectra 1

¢ To reduce degradation to <10%, - | -~ 30k with 2.75% bad z's
requirements are more stringent; _
can be met with ~20k sq. deg.
overlap

Error in <z>

e 4MOST currently plans DESI-
like galaxy+QSO survey (but
somewhat more dilute) in South

¢ DOE Cosmic Visions report
recommends a wide-field
Southern Spectroscopic Survey
Instrument for a 4-6m telescope

Nominal mean z

Snowmass White Paper: Spectroscopic
Needs for Imaging DE Experiments



Those forecasts are pessimistic!
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¢ Makes maximum use of information on linear scales, avoids
integral constraint error

e Obtain errors 2-10x smaller than Newman 2008 / Matthews &
Newman 2010



Biggest concern right now: disentangling cross-

correlations from clustering and lensing magnification — 2DESC
* Black: cross-correlations 0.5 T T
between photo-z objects (z=0.75 :
Gaussian) and spectroscopic 0.4
sample as a function of z % f
< 0.3}
¢ Blue: observed cross-correlation B
S

due to spectroscopic objects

0.2}

lensing photometric ones 9§>

e Red: observed cross-correlation 0.1t
due to photometric objects
lensing spectroscopic ones 0.0

e Weak/CMB lensing could help us
predict the red curves

Matthews & Newman 2014,
in prep.
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Cross-correlations aren't only useful for
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e Tal etal. 2012: cross-correlated
SDSS photometric galaxies
with LRGs to study the s ;
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Figure 4. Comparison between the luminosity functions derived
from individual SDSS LRG frames (blue data points) and from
deep Stripe 82 stacks (green data points) in the redshift range
0.28 < z < 0.40. Solid lines are functional fits to the data using
the two-component model described in Section 3. The faint-end
slope of the Schechter function can be reliably measured and it has
a value of —0.95.



Cross-correlations aren't only useful for <\
cosmology... fDESC

e Ting-Wen Lan, Menard & Mo 7 8 9 10 m 7 8 9 10 u
2016: cross-correlated SDSS 10 108 Mo ~ 122 Ny = 5253
photometric galaxies with ot |
SDSS spectroscopic groups at 10 1
0.01 < z < 0.05 to constrain the 102
conditional luminosity 10
function -
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Conclusions = "DESC

e Photo-z's are critical for dark energy experiments

¢ Incompleteness or incorrect redshifts in spectroscopic samples
can cause systematic errors in photo-z applications

e Cross-correlation methods can calibrate photometric redshifts
even using incomplete samples of only bright galaxies & QSOs

¢ |n addition to constraining redshift distributions, spectroscopic/
photometric cross-correlations can provide powerful probes of
galaxy evolution

e See Snowmass white papers on Cross-Correlations and
Spectroscopic Needs for Imaging Dark Energy Experiments,
http://arxiv.org/abs/1309.5384, 1309.5388



What qualities do we desire in training -..,".'.-

spectroscopy? —DESC

- / I

e Sensitive spectroscopy of ~30,000 faint objects (to i=25.3 for LSST)
- Needs a combination of large aperture and long exposure times
e High multiplexing
- Required to get large numbers of spectra
e Coverage of full ground-based spectral window
- Ideally, from below 4000 A to ~1.5um
e Significant resolution (R=A/AA>~4000) at red end
- Allows secure redshifts from [Ol1] 3727 A line at z>1
e Field diameters > ~20 arcmin
- Need to span several correlation lengths for accurate clustering
e Many fields, >~15

- To mitigate sample/cosmic variance)



Summary of (some!) potential instruments

(557

Telescope / Instrument Collecting Area Field area Multiplex Limiting
(m?) (arcmin?) factor

Keck / DEIMOS 76 54.25 150 Multiplexing
VLT / MOONS 58 500 500 Multiplexing
Subaru / PFS (=MSE) 53 4800 2400 # of fields

Mayall 4m / DESI 114 25500 5000 # of fields

WHT / WEAVE (=4MOST) 13 11300 1000 Multiplexing
GMT/MANIFEST+GMACS 368 314 420-760  Multiplexing
TMT / WFOS 655 40 100 Multiplexing
E-ELT / MOSAIC 978 39-46 160-240  Multiplexing

Table 2-1. Characteristics of current and anticipated telescope/instrument combinations relevant for

obtaining photometric redshift training samples.

Assuming that we wish for a survey of ~15 fields of at

least 0.09 deg® each yielding a total of at least 30,000 spectra, we also list what the limiting factor that
will determine total observation time is for each combination: the multiplexing (number of spectra ob-
served simultaneously); the total number of fields to be surveyed; or the field of view of the selected
instrument. For GMT/MANIFEST+GMACS and VLT/OPTIMOS, a number of design decisions have

not yet been finalized, so a range based on scenarios currently being considered is given.



Time required for each instrument m

Total time(y), Total time(y), Total time(y), Total time(y),

Telescope / Instrument DES / 75% LSST / 75% DES / 90% LSST / 90%
complete complete complete complete
Keck / DEIMOS 0.51 10.22 3.19 63.89
VLT / MOONS 0.20 4.00 1.25 25.03
Subaru / PFS (=MSE) 0.05 1.10 0.34 6.87
Mayall 4m / DESI 0.26 5.11 1.60 31.95
WHT / WEAVE (=4MOST) 0.45 8.96 2.80 56.03
GMT/MANIFEST+GMACS 0.02 - 0.04 0.42 - 0.75 0.13-0.24 2.60-4.71
TMT / WFOS 0.09 1.78 0.56 11.12
E-ELT / MOSAIC 0.02 - 0.04 0.50 - 0.74 0.16 — 0.23 3.10 - 4.65

Table 2-2. FEstimates of required total survey time for a wvariety of current and anticipated tele-
scope /instrument combinations relevant for obtaining photometric redshift training samples. Calculations
assume that we wish for a survey of ~15 fields of at least 0.09 deg® each, yielding a total of at least
30,000 spectra. Survey time depends on both the desired depth (i=23.7 for DES, i=25.3 for LSST) and
completeness (75% and 90% are considered here). Exposure times are estimated by requiring equivalent
signal-to-noise to 1-hour Keck/DEIMOS spectroscopy at i~22.5. GMT / MANIFEST + GMACS esti-
mates assume that the full optical window may be covered simultaneously at sufficiently high spectral
resolution; in some design scenarios currently being considered, that would not be the case, increasing
required time accordingly.



DE systematic errors from uncertainty in photo-z
calibration EDESC

e Estimates based on Gaussian error - Smith03
. : — _ 1'E £=3.00
models: photo-z bias, 6, = <z,-7.>, :

and uncertainty in scatter, o (o)) = L 5200 \ :
6 (RMS(z, -z,)), must be below ' \

~0.003 -0.01 for phOtO'Z %01 _ £=1.50 )
systematics to be subdominant in I w
lensing/BAO (looser requirements | =110 :

come from better P(k) predictions)
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e More realistic: need to consider

catastrophic, non-Gaussian outliers. _ YC
Can’t be eliminated (e.g. HST shows Hearin et al. 2010

2% of faint DEEP2 objects are blends)

e |f drop all galaxies with z<0.3 or z>2.1, random lensing errors
only 20% worse , but systematics much less (Hearin et al. 2010)



Systematic errors from photo-z catastrophic outliers
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e More realistically: need to consider
catastrophic, non-Gaussian outliers

e Can’t be eliminated entirely:

e ~2% of DEEP2 targets were
actually galaxies at different z
blurred together from ground

e Can be difficult to distinguish
one spectral break from
another: degeneracies

e Some sorts of catastrophic errors
worse than others

e |f drop all galaxies with z<0.3 or
z>2.1, lensing errors only 20% worse
(Hearin et al. 2010)
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